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Until recently, inclusive fitness has been widely accepted as a
general method to explain the evolution of social behavior.
Affirming and expanding earlier criticism, we demonstrate that
inclusive fitness is instead a limited concept, which exists only for
a small subset of evolutionary processes. Inclusive fitness assumes
that personal fitness is the sum of additive components caused by
individual actions. This assumption does not hold for the majority
of evolutionary processes or scenarios. To sidestep this limitation,
inclusive fitness theorists have proposed a method using linear
regression. On the basis of this method, it is claimed that inclusive
fitness theory (i) predicts the direction of allele frequency changes,
(ii) reveals the reasons for these changes, (iii) is as general as
natural selection, and (iv) provides a universal design principle
for evolution. In this paper we evaluate these claims, and show
that all of them are unfounded. If the objective is to analyze
whether mutations that modify social behavior are favored or
opposed by natural selection, then no aspect of inclusive fitness
theory is needed.

social evolution | Hamilton’s rule | cooperation | kin selection

Inclusive fitness theory (1–10) is an approach to accounting for
fitness effects in social evolution. It was introduced in 1964 by

W. D. Hamilton (1), who showed that, under certain circum-
stances, evolution selects for organisms with the highest inclusive
fitness. This result has been interpreted as a design principle:
evolved organisms act as if to maximize their inclusive fitness (1,
2, 8, 9, 11, 12).
Hamilton (1) defined inclusive fitness as follows: “Inclusive

fitness may be imagined as the personal fitness which an in-
dividual actually expresses in its production of adult offspring as
it becomes after it has been first stripped and then augmented
in a certain way. It is stripped of all components which can be
considered as due to the individual’s social environment, leaving
the fitness which he would express if not exposed to any of the
harms or benefits of that environment. This quantity is then
augmented by certain fractions of the quantities of harm and
benefit which the individual himself causes to the fitnesses of his
neighbours. The fractions in question are simply the coefficients
of relationship appropriate to the neighbours whom he affects:
unity for clonal individuals, one-half for sibs, one-quarter for
half-sibs, one-eighth for cousins, . . . and finally zero for all
neighbours whose relationship can be considered negligibly
small.” (p. 8). Although modern formulations of inclusive fitness
theory use different relatedness coefficients (3, 5, 13), all other
aspects of Hamilton’s definition remain intact.
The crucial point here is that it is assumed that personal fitness

can be subdivided into additive components caused by individual
actions. The personal fitness of a focal individual is stripped of
all components that are due to the “social environment.” This
means we have to subtract from the personal fitness of an in-
dividual every effect due to other individuals. Subsequently we
have to calculate how the focal individual affects the personal
fitnesses of all other individuals in the population. In both cases
we must assume that personal fitness can be expressed as a sum
of components caused by individual actions. Inclusive fitness is
the effect of the action on the actor plus the effects of the action

on others multiplied in each case by the relatedness between the
actor and the others.
It is immediately obvious that the additivity assumption, which

is essential for the concept of inclusive fitness, need not hold in
general. For example, the personal fitness of an individual can be
a nonlinear function of the actions of others. Or the survival of
an individual could require the simultaneous action of several
others; for example, the reproductive success of the queen might
require the coordinated action of groups of specialized workers.
Experiments have found that the fitness effects of cooperative
behaviors in microbes are not additive (14–16). It is clear that in
general fitness effects cannot be assumed to be additive.

Two Approaches to Inclusive Fitness
Within the literature on inclusive fitness, there are two ap-
proaches for dealing with the limitation of additivity. The first
approach is to restrict attention to simplified models in which
additivity holds. For example, Hamilton’s original formulation of
inclusive fitness theory (1) includes additivity as an assumption.
Additivity also follows from assuming that mutations have only
small effects on phenotypes, and that fitness varies smoothly with
phenotypes (6, 7, 17, 18).
Nowak et al. (19) investigated the mathematical foundations

of this first approach. They demonstrated that this approach also
requires a number of restrictive assumptions beyond additivity of
fitness effects, and is therefore applicable only to a limited subset
of evolutionary processes. In response, more than 100 authors
signed the statement that “inclusive fitness is as general as the
genetical theory of natural selection itself” (20). How are we to
understand this apparent contradiction?
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The answer is that the above statement rests on a second, al-
ternative approach, which deals with the additivity problem in
retrospect. In this approach, the outcome of natural selection must
already be known or specified at the outset, and the objective is to
find additive costs and benefits that would have yielded this out-
come—regardless of whether they correspond to actual bi-
ological interactions. These costs and benefits are determined
using linear regression. This regression method was introduced
by Hamilton (21) in a follow-up to his original work on inclusive
fitness theory, and has been subsequently refined (3–5, 22)
into a recipe for rewriting frequency changes in the form of
Hamilton’s rule.
The regression method underpins many claims of the power

and generality of inclusive fitness theory. For example, it is often
claimed (5, 12, 23, 24) that the regression method allows in-
clusive fitness to eschew the requirement of additivity. It is also
claimed that the regression method generates a prediction of the
direction of natural selection (5), and leads to a quantitative
understanding of any frequency change as a consequence of
social interactions between related partners (3–5, 25).
Here we evaluate these claims by asking, what, if anything, the

regression method reveals about a given evolutionary change. We
show that claims of the method’s predictive and explanatory power
are false, and the claim of its generality is not a meaningful one
that could be evaluated. These findings call into question the idea
that inclusive fitness provides a universal design principle for
evolution—indeed, no such design principle exists.

Regression Method
To perform the regression method, one must start with quanti-
ties that describe a change in allele frequency between two time
points. These quantities can be obtained either from a theoreti-
cal model or from empirical observation, or they can be arbi-
trarily specified. Specifically, the method requires

• The genetic types, g1; . . . ; gN , of all individuals i= 1; . . . ;N
present in the population at the first time point. Here gi = 1
(or 0) indicates that an allele of interest is present (or absent)
in individual i.

• The fitnesses w1; . . . ;wN , with wi defined as the fraction of
individuals alive at the second time point who are descendants
of individual i from the first time point.

• The interaction partners of each individual at the first
time point.

The method also accommodates generalized versions of the
above data. For instance, one can consider g values that range
between 0 and 1, representing the genetic predisposition toward
a trait of interest (3–5, 22). The fitnesses wi can be replaced by
their expected values, if these have been previously determined
from a theoretical model. Also, we consider only asexual re-
production here for the sake of simplicity, but the method can
accommodate sexual reproduction as well (3, 5, 22).
It is clear that, once the above quantities are specified, the

change in allele frequency is known at the outset. We also ob-
serve that no information is included regarding the causes of the
change, or regarding other changes that occur before, between,
or after these time points.
We now describe the regression method, following refs. 3–5.

The average genetic type (g value) of the partners of individual
i is denoted gi′. The method uses least-squares multivariate
regression to fit the given values to a simplified model in which
fitness effects are additive and depend linearly on g values.
Specifically, one proceeds by determining values W0, B, and C
such that, upon writing

wi =W0 −Cgi +Bgi′+ ei; [1]

the sum
PN

i= 1 e
2
i is minimized. The terms W0, −Cgi, and Bgi′,

represent baseline fitness, cost to self, and benefit from others,
respectively, under this simplified model. The residuals ei quan-
tify the deviation of this simplified model from the given data. In
contrast with the usual practice of linear regression, no attention
is given here as to the goodness of fit (5).
To relate Eq. 1 to the change in gene frequency, the notion

of population covariance is introduced. For any quantities
x1; . . . ; xN and y1; . . . ; yN describing members of a population, the
population covariance of x and y is defined as

Cov½x; y�= 1
N

XN

i= 1

xiyi −
1
N2

XN

i= 1

xi
XN

i= 1

yi:

We emphasize that population covariance is a descriptive, rather
than inferential, statistic. The use of statistical terminology in
this manner is potentially confusing (26, 27), but widespread in
the literature on inclusive fitness (3–5, 21, 22, 25).
Taking the population covariance of w with g and substituting

from Eq. 1 yields

Cov½w; g�=Cov½W0; g�−C Cov½g; g�+B Cov
�
g′; g

�
+Cov½e; g�:

[2]

The sign of the left-hand side coincides with the direction of
change in allele frequency by Price’s identity (27, 28). On the
right-hand side, Cov½W0; g�= 0 because W0 is constant, and
Cov½e; g�= 0 as a consequence of the fact that

PN
i= 1 e

2
i is mini-

mized. Dividing both sides of Eq. 2 by Cov½g; g�, which is neces-
sarily positive, yields that the direction of change in allele
frequency coincides with the sign of

−C+B
Cov

�
g′; g

�

Cov½g; g� :

Defining relatedness as R=Cov½g′; g�=Cov½g; g�, one obtains that
the allele frequency increases if and only if BR>C (3–5).
It is claimed that the resulting values of B, C, and R give

a causal explanation for the observed change in frequency (3, 4,
25). In particular, the signs of B and C are said to reveal the
nature of the trait in question: costly cooperation (B;C> 0),
mutually beneficial cooperation (B> 0; C< 0Þ, selfishness
(B;C< 0), or spite (B< 0;C> 0) (5, 29).
A sample application of the regression method is provided in

Fig. 1. The leftmost panel shows the genetic types, offspring
numbers, and interaction partners in a hypothetical population.
One immediately observes that the allele of interest is increasing.
Applying the regression recipe yields B= 19=11, C= 3=11, and
R= 7=15. We provide a step-by-step calculation of these values
in SI Appendix. Thus, according to standard interpretation (5,
29), the allele encodes costly cooperation ðB;C> 0Þ, which suc-
ceeds due to high relatedness between interaction partners
(BR>C).

Regression Method Does Not Yield Predictions
We now evaluate the various claims made regarding the re-
gression method, starting with the claim that it predicts the di-
rection of selection (5). This claim cannot be true, because the
allele frequency change over the considered time interval is
specified at the outset. The “prediction” merely recapitulates
what is already known, such that the sign of BR−C agrees with
the predetermined outcome.
The regression method also does not predict what will happen

over different time intervals or under different conditions. With
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any change in the considered scenario or time interval, the starting
data must be respecified and the method reapplied, yielding new
and independent results.
This lack of predictive power is unsurprising. It is logically

impossible to predict the outcome of a process without making
prior assumptions about its behavior. In the absence of any
modeling assumptions, all that can be done is to rewrite the given
data in a different form.
Experimentalists (15, 30) have noticed this absence of pre-

dictive capacity. One recent study (15) applied the regression
method to the cooperative production of an agent needed for
antibiotic resistance in Escherichia coli. The authors conclude
that “even if one has measured the values of B, C and R for
a particular system of producers and nonproducers, one cannot
predict what will result from changing either the structure of
population or the biochemistry of the individuals” (15).

Regression Method Does Not Yield Causal Explanations
We now evaluate the explanatory power of the regression
method. The current literature appears to disagree on this point.
Some works claim the method yields causal explanations for
frequency change (3, 4, 25), whereas others make the more
limited claim that it provides a useful conceptual aid (5).
Moreover, the quantities that result from the regression method
are commonly described in terms of social behaviors such as
altruism and spite (5, 29), imbuing these quantities with a “causal
gloss” (31) even if no direct claims of causality are made.
The claim that the regression method identifies the causes of

allele frequency change cannot be correct, because regression
can only identify correlation, and correlation does not imply
causation. For example, in the scenario of Fig. 1, we obtained
B;C> 0, which is claimed to indicate costly cooperation (5, 29).
However, without further information, there is no scientific basis
to conclude that the frequency change resulted from cooperation
rather than other factors or random chance.
More generally, because the regression method attempts to

find additive social fitness effects that match given data, we
should expect it to yield misleading results when social inter-
actions are not additive, or when fitness variation is caused by
other factors. Based on this principle, we present three hypo-
thetical scenarios in which the regression method mischaracterizes
the reasons for frequency change (Fig. 2).
In the first hypothetical scenario, a “hanger-on” trait leads its

bearers to seek out and interact with individuals of high fitness.
We suppose that these interactions do not affect fitness. How-
ever, this seeking-out behavior leads fitness to become positively

correlated with having a hanger-on as a partner; thus the re-
gression method yields B> 0. According to the proposed in-
terpretation (5, 29), hangers-on should be understood as coop-
erative, bestowing high fitness on their partners. However, of
course this gets causality backward—the high fitness causes the
interaction, not the other way around.
Variants of this hanger-on behavior may occur in many bi-

ological systems. A bird may choose to join the nest of a high-
fitness pair, with the goal of eventually inheriting the nest.
Similarly, a social wasp may be more likely to stay at its parents’
nest if the parent has high fitness, also with the goal of eventual

Fig. 1. Regression analysis of a hypothetical change in frequency. The starting ingredients are the genetic types (represented by colors), interaction partners
(represented by arrows), and numbers of eventual offspring (represented by numbers) of each individual present at a particular time. The change in allele
frequency is already known from these data. The regression recipe is applied by fitting these data to a linear model of offspring number based on each
individual’s own genotype and partner’s genotype. For this process, we obtain B,C > 0 and BR−C > 0, indicating that the rise in frequency of the blue type is
due to costly cooperation between closely related partners. In the absence of further information, there is no statistical or scientific reason to conclude that
this interpretation is correct.

Fig. 2. Regression does not identify the causes of frequency change. Three
hypothetical examples show how the regression method leads to incorrect
interpretations. (A) A hanger-on (purple) finds a high-fitness partner to in-
teract with. The regression recipe yields B> 0,C < 0, misinterpreting this be-
havior as mutually beneficial cooperation. (B) A jealous individual (red)
attacks an individual of high fitness. This attack reduces the recipient’s fit-
ness from 5 to 4, and the attacker’s fitness from 1 to 0. The regression recipe
yields B,C > 0, misinterpreting this attack as costly cooperation. (C) A nurse
(blue) helps an individual of low fitness. This aid increases the recipient’s
fitness from 0 to 0.5 (representing a 50% chance of having an offspring), and
decreases the nurse’s fitness from 1 to 0.5. The regression recipe yields
B< 0,C > 0, misinterpreting this aid as costly harming or spite. For all three
examples, the classification of the behavior according to B and C is in-
sensitive to minor changes in the data; for example, the fitness of the
hanger-on’s partner can be changed to any number greater than 1 without
altering the classification as mutually beneficial cooperation.

Allen et al. PNAS | December 10, 2013 | vol. 110 | no. 50 | 20137

EV
O
LU

TI
O
N

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
10

, 2
02

1 



www.manaraa.com

inheritance. Applying the regression method to these situations
would lead one to mistake purely self-interested behaviors
for cooperation.
The second example is a “jealous” trait. Jealous individuals

seek out high-fitness partners and attack them with the aim of
reducing their fitness. We suppose that these attacks are costly to
the attacker but only mildly effective, so that the attacked indi-
viduals still have above-average fitness after the attacks. The
regression method yields B;C> 0, suggesting that the jealous
individuals are engaged in costly cooperation. Again, this in-
terpretation is wrong: the attacks are harmful, and the positive
fitness correlation is due to the choice of interaction partners and
the ineffectiveness of the attacks.
The third example is a “nurse” trait. A nurse will seek out low-

fitness individuals and make costly attempts to improve their
fitness. We suppose, however, that this aid is only mildly effec-
tive, so that the aided individuals still have below-average fitness.
The regression method yields B< 0;C> 0, misinterpreting this
remaining low fitness as due to costly sabotage on the part of
the nurses.

“Assumption-Free” Approaches
Finally, we turn to the claim that inclusive fitness theory is “as
general as the genetical theory of natural selection itself” (20).
The argument is that, because the regression method can be
applied to an arbitrary change in allele frequency (regardless of
the actual causes of this change), it follows that every instance of
natural selection is explained by inclusive fitness theory.
However, as we have seen, the regression method yields a

“just-so story” that does not predict nor explain anything about
the given scenario or any other (15). Of course, there can exist
cases for which the regression method yields correct causal
explanations, and there can also exist cases for which the results
obtained for one scenario are approximately accurate for certain
others. However, the regression method provides no criteria to
identify these cases—indeed, to formulate such criteria would
require additional assumptions about the underlying processes.
Without such assumptions, the results of the regression method
do not answer any scientific question about the situation under
study. The claim of generality is therefore meaningless.
This lack of utility is not due to any technical oversight.

Rather, it arises from the attempt to extend Hamilton’s rule to
every instance of natural selection. This impulse is understand-
able, given the intuitive appeal of Hamilton’s original formula-
tion. However, the power of a theoretical framework is derived
from its assumptions, thus a theory with no assumptions can-
not predict or explain anything. As Wittgenstein argued in his
Tractatus Logico-Philosophicus (32), any statement that is true
in all situations contains no specific information about any
particular situation.

There Is No Universal Design Principle
The concept of inclusive fitness arises when one attempts to
explain the evolution of social behavior at the level of the in-
dividual. For example, inclusive fitness theory seeks to explain
the existence of sterile ant workers in terms of the behaviors
of the workers themselves. The proposed explanation is that
workers maximize their inclusive fitness by helping the queen
rather than producing their own offspring (11, 29).
The claim that evolution maximizes inclusive fitness has been

interpreted as a universal design principle for evolution (1, 2, 8,
9, 12). This claim is based on an argument by Hamilton (1) that
evolution maximizes the mean inclusive fitness of a population
(see also ref. 11), and a separate argument by Grafen (8, 9) that
evolved organisms act as if to maximize their inclusive fitness.
Both of these arguments depend on restrictive assumptions, in-
cluding additivity of fitness effects (1, 8). Because experiments

have shown that fitness effects in real biological populations are
nonadditive (14–16), these results cannot be expected to hold in
general. Moreover, both theory (33–36) and experiment (37, 38)
have shown that frequency-dependent selection can lead to
complex dynamical phenomena such as multiple and mixed
equilibria, limit cycles, and chaotic attractors, ruling out the pos-
sibility of general maximands. Thus, evolution does not, in general,
lead to the maximization of inclusive fitness or any other quantity.

Common-Sense Approaches to Evolutionary Theory
Fortunately, no universal maximands or design principles are
needed to understand the evolution of social behavior. Rather,
we may rely on a straightforward genetic approach: Consider
mutations that modify behavior. Under which conditions are
these mutations favored (or disfavored) by natural selection?
The target of selection is not the individual, but the allele or the
genomic ensemble that affects behavior.
To investigate these questions theoretically, one needs mod-

eling assumptions. These assumptions can be highly specific,
applying only to particular biological situations, or broad, ap-
plying to a wide range of scenarios. Modeling frameworks that
rely on general (yet precise) assumptions have recently emerged
as a powerful tool for studying the evolution of populations
structured spatially (39–42), by groups (43), and physiologically
(44–46); the evolution of continuous traits (47–49); and inclusive
fitness theory itself (in cases where fitness effects are additive
and other requirements are satisfied) (7, 19). Although these
frameworks can be used to obtain general results, none of them
is universal or assumption-free. Instead, they draw upon their
assumptions to make well-defined, testable predictions about the
systems to which they apply.

Discussion
Inclusive fitness theory attempts to find a universal design prin-
ciple for evolution that applies at the level of the individual. The
result is an unobservable quantity that does not exist in general
(if additivity is required) or has no predictive or explanatory
value (if the regression method is used). If instead we take
a genetic perspective and ask whether natural selection will favor
or oppose alleles that modify social behavior, there is no need for
inclusive fitness.
The dominance of inclusive fitness theory has held up progress

in this area for many decades. It has consistently suppressed
reasonable criticism, as for example from Cavalli-Sforza and
Feldman (50), Karlin and Matessi (51), and Matessi and Karlin
(52), and alternative approaches. In particular, the attempt to
eschew the requirement of additivity using regression methods
has led to logical obfuscation and false claims of universality (5,
20, 24). Reasonable inclusive fitness calculations that assume
additivity represent an alternative method to account for fitness
effects in some limited situations (7, 13, 53–55), but this method
is never necessary and often needlessly complicated. There is no
problem in evolutionary biology that requires an analysis based
on inclusive fitness.
Having realized the limitations of inclusive fitness, sociobiol-

ogy now has the possibility to move forward. We encourage the
development of realistic models grounded in a firm understanding
of natural history. With the aid of population genetics, evolu-
tionary game theory, and new analytic procedures to be developed,
a strong and resilient sociobiological theory can emerge.
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